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Abstract 

A simple and accurate regression equation was established to construct a regression curve that agreed with 

analytical requirements. This method uses new equations for the slope and y-intercept based on a new criterion, 

which is the sum of the absolute relative errors of the x-values (SARE).  This paper derived new parameters 

SARE and AARE to determine the best linear relationship between the variables. The idea in this paper is that 

the best line fit for the points is that it has the smallest sum of the absolute relative error of the value of x. The 

SARE and AARE parameters can be used to find the best line and best dynamic range or working range to use 

in the experiments. 
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1. Introduction 

1.1 Regression equation 

The calibration curve is necessary in most measurements of the experiments. It is a set of operations that detects 

the relationship between the instrument reading of the experiments (e.g., the response of an instrument) and 

the accepted values of the standard (e.g., the amount present of analyte). Many analytical methods require 

calibration curves. This typically involves using a set of standards containing a known amount of the analyte 

of interest, reading the instrument's response to each standard, and finding the relationship between the 

instrument's response and the amount of the analyte (calibration curve or regression curve). This relationship 

is then used to convert the measurements made on the test samples into estimates of the amount of analyte 

present, for example is the labbert- beer plot of absorbance against concentration. (1,2) 

        There is more than one line can pass through a set of points. As example four data points in tablet (1). 

Several lines can be fitting to the four data points. Figures (1) and (2) show two lines possibilities.  

 

Tablet 1.  

 

 

 

  

 

                                              Fig 1. Line A                                    Fig 2. Line B 
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Line A: y = 0.50 + 1.25x Line B: y = -0.25+ 1.50x 



         To determine how a line fits to the data, the errors (e) must be computed using the same line to 

quantitatively measure the y values of the data points. The best line is that has the smaller sum of squared 

errors (∑ e2), (3,4) Figure 2 shows line B has the better data. The least-squares criterion is the line that achieves 

the smallest sum of squared errors, and it is the best line fitting to the points. Table (2) shows the result. 

 

Table 2. Sum of squared errors to two lines. 

Linei A: y = 0.50 + 1.25x  Linei B: y = -0.25+ 1.50x 

X Yi y-i ei e2i  Xi Yi y-i Ei e2i 

1 1i 1.75i -0.75i 0.5625i 1i 1i 1.25i -0.25i 0.0625i 

1 2i 1.75i 0.25i 0.0625i 1i 2i 1.25i 0.75i 0.5625i 

2 2i 3i -1i 1.0000i 2i 2i 2.75i -0.75i 0.5625i 

4 6i 5.5i 0.5ii 0.2500 4i 6i 5.75i 0.25i 0.0625 

   Sum 1.8750i    Sum 1.2500i 

  

        Where y- is computed by the regression equation of the line at each X value and e (error) is the difference 

between y and y- (y - y-) 

        There are equations for determining the line with the smallest value of the sum of squared errors (∑e2), 

where y = b1x + b0, b1 is the slope, and b0 is the y-intercept.             

For, the number of data points (n), b0, and b1, can be computed using the following equation: (5) 

𝑏1 =
𝑖𝑠𝑥𝑦

𝑖𝑠𝑥𝑥
 

𝑏0= 
1

𝑛
(∑ 𝑖𝑦𝑖−𝑏1

∑ 𝑖𝑥𝑖) 

Where, sxx ,sxy called computing formulat 

 𝑆𝑥𝑥 =  ∑ 𝑖𝑥𝑖
2 − (∑ 𝑖𝑥𝑖)

2

/𝑛 

𝑆𝑥𝑦= ∑ 𝑥𝑖𝑦𝑖 − (∑ 𝑖𝑥𝑖)(∑ 𝑖𝑦𝑖)/𝑛 

 

b1 and bo are the slope and y-intercept of the regression equation for the best line with least squared errors. For 

an example, the regression equation was computed for the experiment established for spectrophotometric 

determination of chloramphenicol. (6) Tables (3) shows the results. 

 

 



Table 3. b0 and b1 for the method 

X Y Xy x2 Sxx Sxy b0 b1 

0.1 0.032 0.0032 0.01 180.8092 10.1004 0.0559 0.0228 

1 0.083 0.083 1 

2 0.131 0.262 4 

3 0.188 0.564 9 

4 0.244 0.976 16 

5 0.299 1.495 25 

6 0.354 2.124 36 

7 0.409 2.863 49 

8 0.464 3.712 64 

9 0.542 4.878 81 

10 0.598 5.98 100 

11 0.63 6.93 121 

12 0.685 8.22 144 

Sum 78.1 4.659 38.0902 650.01 

 

The regression equation is y = 0.0559x + 0.0228 

To plot the line, two independent variables (x) were chosen, and the dependent variable (y) was computed 

from the equation (y-). Table (4) and figure (3) show the results. 

 

 

Table 4. Two points 

 

 

 

                                

                                                      Fig 3. Regression line of method  

The line that best fits the data points according to the least-squares criterion (regression curve) is the line that 

has the smallest sum of square errors. Table (5) shows the sum of the square errors for the experiment. 
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Table 5.  Sum of square errors for method. 

Xi Yi 𝑦𝑖̂ E e2 ∑e2 

0.1 0.032 0.03016 0.00184 3.3856*10-06 0.000615 

1 0.083 0.0802 0.0028 7.84*10-06  

2 0.131 0.1358 -0.0048 0.00002304  

3 0.188 0.1914 -0.0034 1.156*10-05  

4 0.244 0.247 -0.003 9*10-06  

5 0.299 0.3026 -0.0036 1.296*10-05  

6 0.354 0.3582 -0.0042 1.764*10-05  

7 0.409 0.4138 -0.0048 2.304*10-05  

8 0.464 0.4694 -0.0054 2.916*10-05  

9 0.542 0.525 0.017 0.000289  

10 0.598 0.5806 0.0174 0.00030276  

11 0.63 0.6362 -0.0062 3.844*10-05  

12 0.685 0.6918 -0.0068 4.624*10-05  

    

The sum of the squared errors was (0.000615), and no other line can give a smaller value than (0.000615). 

1.2 Coefficient of Determination 

The coefficient of determination which is symbolized by the (r2), is an important quantity that measures the 

fraction of the observed variation in y that is explained by the linear relationship. The value of r2 between 0 

t0 1. (7) The equation below explains how r2 calculated. (8) 

𝑟2 =
𝑖𝑆𝑆𝑅

𝑖𝑆𝑆𝑇
 

Where, SSRi is Regression sums of squares, which explains by: 

𝑦̂𝑖, is the computed y by the equation. 

𝑦̅ , is the mean of y observed 

𝑆𝑆𝑅 = ∑(𝑖𝑦̂𝑖 − 𝑖𝑦̅)2 

SSTi is total sums of squares, which explains by: 

 

𝑆𝑆𝑇 = ∑(𝑖𝑦𝑖 − 𝑦̅)2 



Analysts decide that the best range for the regression curve is one that gives an r2 value close to 1. Table (6) 

shows using equations above for computing r2 to chloramphenicol experiment. (6) 

 

 

Table 6. R2 for method. 

X Y 𝑦̂ 𝑦 − 𝑦 ̅ (𝑦 − 𝑦 ̅)2 (𝑦̂ − 𝑦 ̅) (𝑦̂ − 𝑦 ̅)2 

0.1 0.032 0.030 -0.285 0.081 -0.2869 0.0823 

1 0.083 0.080 -0.234 0.054 -0.2368 0.0561 

2 0.131 0.135 -0.186 0.034 -0.1812 0.0328 

3 0.188 0.191 -0.129 0.016 -0.1255 0.0157 

4 0.244 0.247 -0.073 0.005 -0.0699 0.0048 

5 0.299 0.302 -0.018 0.0003 -0.0142 0.0002 

6 0.354 0.358 0.036 0.0013 0.0413 0.0017 

7 0.409 0.414 0.091 0.008 0.0970 0.0094 

8 0.464 0.469 0.146 0.0215 0.1526 0.0233 

9 0.542 0.525 0.224 0.0505 0.2083 0.0433 

10 0.598 0.581 0.280 0.0788 0.2639 0.069 

11 0.63 0.636 0.312 0.0978 0.3195 0.1021 

12 0.685 0.692 0.367 0.1353 0.3752 0.1408 

𝑦̅ = 0.35838461 ∑(𝑦 − 𝑦 ̅)𝑖2 = 0.565027077 ∑(𝑦̂ − 𝑦 ̅)2 = 0.564994492 r2= 0.9999 

 

Problem and suggestion 

1.1. The problem 

In the least squares criterion, there is a problem when points of concentration of a substance (x-value) are 

plotted against the physical quantity associated with the concentrations (y-value), if the same regression 

equation is used to calculate the unknown concentration of the same substance, there is an error in the 

concentration recovery percentage. For example, if the concentration of chloramphenicol is taken as 1 ppm (x-

value) and its corresponding absorbance is 0.083 (The observed y-value) as in the table above and if the 

concentration is assumed to be unknown and the regression equation is used to calculate it, the result will be 

1.08 ppm with a relative error of 7.80% and a recovery percentage of 107.80. because of the error, or called 

(residuals). Residuals, which are represented by (e), are the differences between the observed reading and 

measured values from the equation of the response variable. (9) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = 𝑖𝑒𝑖 =  𝑖𝑦𝑖 − 𝑖𝑦̂𝑖 



 

 

 

 

 

 

 

 

 

 

Fig 4 The residuals 

In fact, this error is inevitable because there is no exact linear relationship between two variables therefore, the 

best line passing between points is the one with the smallest sum of squared error according to the least squares 

criterion. (10) 

Does this equation provide the best application for determining the concentration (x-value)? And is the effect 

of the residuals on a small concentration the same as that on a large concentration? To answer this question, 

let us return to Table 3 and assume that the absorbance of the solution with a concentration of 1 ppm changes 

from 0.083 to 0.09, with a difference equal to 0.007, and the absorbance of the solution with a concentration 

of 10 ppm changes from 0.598 to 0.605 with a difference equal to 0.007, the line will change to give new 

equations. If the equations are used to calculate the concentration and the relative error in two cases, the result 

is the calculated concentration for 1 ppm will change from 1.08 to 1.18 ppm and the relative error from 7.8% 

to 18.06% and for 10 ppm will change from 10.3 to 10.41 ppm and relative error from 2.97% to 4.06%. The 

results are shown in Table 7.  

 

Table 7. The relative error after occur changing in absorbance. 

 

As shown in the above results, the effect of the error on the smaller value of x is greater than that for a large x 

value. 

Before the change y = 0.0559x + 0.0228 After the change y = 0.0558x + 0.0241 

Conc.(X) Abs(y) Conc. found E% Abs(y) Conc. found E% Rec.% 

1 0.083 1.08 7.8 0.09 1.18 18.06 118.06 

10 0.589 10.3 2.97 0.605 10.41 4.06 104.06 



In fact, the difference in the effect of the error on the smallest value of concentration or the value of X is due 

to the idea of the least-squares criterion focuses on minimizing the absolute error of the computed y-value. 

Since the effect of two identical absolute errors in the y-value on the computed x-value (when the y-value is 

used to calculate x) varies with the magnitude of the x-value, using the least square criterion does not give an 

accurate result, especially at small x-values. 

Analysts focus on minimizing the relative error in calculating the concentration or value of x, especially for 

smaller values of x. (3) Therefore, this study focuses on finding a new equation to calculate the value of x with 

the smallest relative error.  

Analysts use standard materials to measure the value of a material property associated with several 

concentrations, such as absorbance, and then plot a regression curve. Analysts seek to know the working range 

or linear dynamic range, which is the set of points that are related to each other by a linear relationship, in 

other words, the concentration range over which the analyte can be determined using a calibration curve. (11) 

Some higher or lower points deviate from that relationship for a variety of chemical or physical reasons. 

Analysts use the r2 criterion to find the working range by determining how close the r2-value is to 1. But there 

is a problem with this method because there is no rule that decides whether or not to exclude the point, by 

comparison with the amount of change in the value of r2. For example, if a measurement point is added to the 

working range and it is found that the r2 -value has changed from 0.9997 to 0.9996, is this difference (0.0001) 

enough for us to decide to exclude the point? In fact, there is no clear rule for this. Therefore, this study 

developed an accurate criterion to know the appropriate working range to be used and the possibility of adding 

or excluding a measurement point.   

2.2 The suggested solution 

This study suggests a new method for computing the regression equation in an easy manner and provides the 

best result for the smallest x values. The symbol of this equation is suggested to be (DH Equation). 

The known regression equation is based on the sum of the square error to the y value, whereas the suggested 

equation based on the new criterion is the sum of the absolute relative error to the x value. 

The absolute relative error is used instead of the squared error, because the amount of error contribution to the 

sum of absolute errors is different from the sum of squared errors. For example, an error of 1.1 becomes greater 

when squared (1.21), while an error of 0.11 becomes smaller when squared (0.0121). 

Therefore, the use of the absolute value is appropriate to make the contribution of the relative error to the sum 

of the relative errors proportional to the value of the relative error. An equation was derived to calculate the 

sum of the absolute relative errors (ASRE) and average of absolute relative error (AARE). 

 

𝑆𝐴𝑅𝐸 =  100 ∑ |
𝑦𝑖 − 𝑏𝑜

𝑏1𝑥𝑖
− 1| 

𝐴𝐴𝑅𝐸 =  
100

𝑛
∑ |

𝑦𝑖 − 𝑏𝑜

𝑏1𝑥𝑖
− 1| 



The AARE value must be smaller than five because the relative error for the individual value must be between 

-5 and +5 (3). The best line and most suitable for points is the one that has the smallest (SARE). The SARE and 

AARE for the data in table 3 show in Table 8. 

 

Table 8 The SARE and AARE for the data in table 3 

y = 0.0559x + 0.0228 

ASRE AARE 

91.77 7.06 

SARE is not the smallest value because this line depends on the smallest sum of the square error not the sum 

of the absolute relative error. Therefore, a new equation was developed (DH Equation) to find the line with 

the smallest SARE from the known equation. The slope (b1) and y-intercept (bo) to (DH Equation) was defined 

as                                      

𝑏1 =
∑ 𝑦𝑖 − 𝑛𝑦1

∑ 𝑥𝑖 − 𝑛𝑥1
 

𝑏𝑜 =
𝑦1 ∑ 𝑥𝑖 − 𝑥1 ∑ 𝑦𝑖

∑ 𝑥𝑖 − 𝑛𝑥1
 

2.3 DH Equation VS Known Equation 

Some experimental data were used to compare the DH equation with a known equation with SARE and AARE. 

 

Table 9. The comparison between DH Equation and known equation for the experiment 1(6) 

 

 

 

 

 

X 0.1 1 2 3 4 5 6 7 8 9 10 11 12 

Y 0.032 0.083 0.131 0.188 0.244 0.299 0.354 0.406 0.464 0.542 0.598 0.63 0.685 

Equation 

 

DH Equation 

y = 0.0552x + 0.0265 

Known equation 

y = 0.0559x + 0.0228 

SARE 24.95 91.77 

AARE 1,92 7.06 



 

Table 10. The comparison between DH Equation and known equation for the experiment 2 (12) 

 

 

 

 

 

 

 

 

Table 11. The comparison between DH Equation and known equation for the experiment 3 (13) 

 

 

 

 

 

 

 

Table 12. The comparison between DH Equation and known equation for the experiment 4 (14) 

 

 

 

 

 

 

 

 

Table 13. The comparison between DH Equation and known equation for the experiment 5 (15) 

X 1 2 3 4 5 6 7 8 9 

y 0.061 0.111 0.166 0.236 0.299 0.337 0.399 0.462 0.522 

Equation 

 

DH Equation 

y = 0.0568x + 0.0042 

Known equation 

y = 0.0577x - 0.0006 

SARE 21.98 24.45 

AARE 2,44 2.72 

X 0.1 0.5 1 2 3 4 5 6 

y 0.088 0.183 0.285 0.528 0.757 1.009 1.222 1.446 

Equation 

 

DH Equation 

y = 0.2314x + 0.0649 

Known equation 

y = 0.2318x + 0.0639 

SARE 9.88 14.55 

AARE 1,23 1.82 

X 1 2 3 4 5 

Y 0.262 0.539 0.762 1.022 1.334 

Equation 

 

DH Equation 

y = 0.2685x - 0.0465 

Known equation 

y = 0.2708x - 0.0534 

SARE 5.73 7.68 

AARE 1,43 1.92 

X 0.04 0.08 0.16 0.24 0.32 0.4 



 

 

 

        

  

 

 

The above examples show that the SARE and AARE of the DH Equation are smaller than those of the normal 

equation. 

 

2.4 SARE and AARE  VS R2 

        SARE and AARE can be useful for determining the best range of data where the best range has an AARE 

nearest to zero and less than 5, also when SARE plummets more than 5 with exclusion of a point from the 

beginning or end range. This indicates the possibility of excluding that point because it has a high relative error 

(more than five). 

As example, when two ranges of data 0.1-12 and 1-12 are taken from table 9 and from the results that were 

shown in the table below, we conclude the possibility to delete (0.1) from the range because SARE and AARE 

decrease significantly. In addition, the DH equation has shown the ability to provide fewer values of SARE 

and AARE.  

 

 

Table 14 Shows the parameters of equations of range 0.1-12 and 1-12 

Range from 0.1 to 12 

Equation Formula R2 SARE AARE 

DH Equation y = 0.0552x + 0.0265  24.95 1.92 

Normal equation y = 0.0559x + 0.0228 0.9986 91.77 7.06 

Range from 1 to 12 

Equation Formula R2 SARE AARE 

DH Equation y = 0.055x + 0.028  24.37 2.03 

Normal equation y = 0.056x + 0.0214 0.9983 26.79 2.23 

 

y 0.133 0.283 0.565 0.828 1.125 1.391 

Equation 

 

DH Equation 

y = 3.527x - 0.0081 

Known equation 

y = 3.4895x - 0.0003 

SARE 7.17 9.42 

AARE 1,19 1.57 



As shown in Table 14, when the range changes from 0.1-12 to 1-12, the r2 of the normal equation changes 

from 0.9986 to 0.9983. This means that point 0.1 should not be exclude and the best range is 0.1-12. 

However, this is not correct because when calculating the smallest point value (0.1, suppose the smallest point 

value is unknown and is calculated from the normal equation where the y-value is 0.032), the result is 0.16 

with a relative error of 65%. Thus, this point must be excluded. 

This is evident when using SARE and AARE, as SARE was reduced from 91.77 to 26.79 when the range was 

changed from 0.1-12 to 1-12 with a difference equal to 65, so SARE tells us precisely that the range should be 

1-12. 

On other hand, when using the DH Equation and changing the range from 0.1-12 to 1-12 was found that SARE 

only change from 24.95 to 24.37 with a difference of 0.58 only, that means in some cases the DH equation 

reduced the error of the smallest point and allow the range to be wider, in general DH Equation give the smaller 

sum of relative error and the SARE and AARE parameter give the best indicate to know the best range. 

Another example is when the data in table 11 are taken and two ranges of data 0.1 -6 and 0.05-6 are taken. 

Table 15 shows the SARE and AARE values in the range of 0.05 6. 

Table 15 Shows the parameters of equations of range 0.1 to 6 and 0.05-6 

 

As shown from the above results, r2 does not change (0.9997) with a difference of 0; thus, the question 

is whether this point is excluded. The answer is that there is no clear rule, so it may seem that the 

difference is small or no difference, and that the decision is not to exclude the point. 

However, this is not correct because when calculating the smallest point value (0.05, suppose the smallest 

point value is unknown and is calculated from the normal equation where the y-value is 0.06), the result is 0 

with a relative error of approximately -100, this means that it must exclude the point.  

The data from SARE and AARE suggested that the range should be 0.1-6 because the SARE rose from 14.55 

to 132.56 when they modified the range from 0.1-6 to 0.05-6 with a difference equal to 118. Again, DH 

Equation gives the smallest SARE and AARE. 

 

Range from 0.1 to 6 

Equation Formula R2 SARE AARE 

DH Equation y= 0.2314x+0.0649  9.88 1.23 

Known equation y= 0.2318x+0.0639 0.9997 14.55 1.82 

Range from 0.05 to 6 

Equation Formula R2 SARE AARE 

DH Equation y= 0.2376x+0.0481  87.45 9.72 

Known equation y= 0.2327x+0.0599 0.9997 132.56 14.73 



Table 16 the comparison between DH Equation and Normal Equation. 

Parameters DH Equation Known Equation 

Slop (b1) ∑ 𝑦𝑖 − 𝑛𝑦1

∑ 𝑥𝑖 − 𝑛𝑥1
 

∑ 𝑥𝑖𝑦𝑖 − (∑ 𝑖𝑥𝑖)(∑ 𝑖𝑦𝑖)/𝑛

∑ 𝑖𝑥𝑖
2 − (∑ 𝑖𝑥𝑖)

2
/𝑛

 

y-intercept (bo) 𝑦1 ∑ 𝑥𝑖 − 𝑥1 ∑ 𝑦𝑖

∑ 𝑥𝑖 − 𝑛𝑥1
 

1

𝑛
(∑ 𝑖𝑦𝑖−𝑏1

∑ 𝑖𝑥𝑖) 

R2  𝑖 ∑(𝑦̂𝑖 − 𝑦̅)2

𝑖 ∑(𝑖𝑦𝑖 − 𝑦̅)2
 

 

R  
𝑖 

∑ 𝑖𝑥𝑖𝑦𝑖 − (∑ 𝑖𝑥𝑖)(∑ 𝑖𝑦𝑖)/𝑛

√[∑ 𝑖𝑥𝑖
2 − (∑ 𝑖𝑥𝑖)

2
/𝑛][∑ 𝑖𝑦𝑖

2 − (∑ 𝑖𝑦𝑖)
2

/𝑛]

 

SARE 
100 ∑ |

𝑦𝑖 − 𝑏𝑜

𝑏1𝑥𝑖
− 1| 

 

 

AARE 100

𝑛
∑ |

𝑦𝑖 − 𝑏𝑜

𝑏1𝑥𝑖
− 1| 

 

 

2. Conclusions 

In this paper, a new regression equation (DH equation) was suggested. It was a good equation for more than 

one reason. 

1. It is easy to calculate slop and y-intercept values. 

3. It is the best equation for calculating the x-value with the smallest relative error. 

3. It uses the smallest sum absolute relative error (SARE) and the smallest value of average absolute relative 

error (AARE) in the calculated x value to find out the best fitting line of points that meets the requirements of 

analytical analysis. 

4. It gives the best way to find out the best working range of data by using SARE and AARE parameter. 
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